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Abstract. A theory is developed for the single-particle spectra of the symmetric Anderson
model, in which local moments are introduced explicitly from the outset. Dynamical coupling
of single-particle processes to low-energy spin-flip excitations leads, within the framework of
a two-self-energy description, to a theory in which both low- and high-energy spectral features
are simultaneously captured, while correctly preserving Fermi liquid behaviour at low energies.
The atomic limit, non-interacting limit and strong-coupling behaviour of the spectrum are each
recovered. For strong coupling in particular, both the exponential asymptotics of the Kondo
resonance and concomitant many-body broadening of the Hubbard satellite bands are shown to
arise naturally within the present approach.

1. Introduction

The single-impurity Anderson model [1] has long served as a paradigm for the understanding
of magnetic impurities in metals, and more generally as a generic model for the physics
of strong, local electron correlations [2]. Thermodynamic and low-energy properties of
the model are by now well understood, in particular from Betheansatz[3] and renorm-
alization group [4] studies. But despite much important work in recent years (reviewed
comprehensively in [2]), the situation is much less satisfactory as far as dynamics, and in
particular spectral functions, are concerned.

In this paper we consider the symmetric, spin-1
2 Anderson model; and seek to develop a

theory for its single-particle spectra as a function of the local interaction strengthU . Ideally,
a satisfactory description of such should have the following characteristics.

(i) It should be capable of describing simultaneously both low- and high-energy spectral
features: the Kondo resonance and the Hubbard satellite bands respectively.

(ii) Fermi liquid behaviour should be recovered correctly at low energies, in particular
the quasiparticle form for the impurity Green function.

(iii) The atomic limit, non-interacting limit (U = 0) and strong-coupling (U → ∞)
behaviour of the spectrum should all be encompassed.

For strong coupling in particular, the exponential diminution of the Kondo scale with
interaction strength, lnωK ∝ −U , should be captured; together with concomitant many-
body spectral broadening of the satellite bands.

While desirable, the above aims are by no means straightforward to achieve in practice.
To describe high-energy spectral properties, particularly in strong coupling, an expansion
in the host–impurity hybridization, starting from the atomic limit, is natural. This underlies
for example both 1/N expansions [5–7] (withN the impurity degeneracy) and the non-
crossing approximation [8–11]. These approaches are designed to capture theN → ∞
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limit (as opposed to the spin-1
2 case,N = 2), and are most successful in the extreme

asymmetric limit withU = ∞. While high-energy excitations are in general rather well
described by such, they are unsatisfactory at low energies where Fermi liquid behaviour is
violated; similar comments apply to their finite-U generalizations (see e.g. [6, 11]), where
in addition the non-interacting limit is not recovered. Slave boson methods [12–14], by
contrast, are designed to handle low energies and capture Fermi liquid behaviour, again
most successfully in the large-N and extreme asymmetric limits. Their ability to describe
high-energy properties is however much less satisfactory. Further, due to the difficulties of
handling double occupancy, extension to finiteU is not straightforward; progress in this
regard (see e.g. [14]) is confined in practice to large degeneracies, and cannot capture the
spin-degenerate caseN = 2.

An alternative is finite-order perturbation theory inU about the non-interacting limit
[15, 16]. The full spectrum is thereby obtained and, at least for the symmetric Anderson
model, Fermi liquid behaviour arises straightforwardly. But the approach is limited to
weak/moderate interaction strengths; strong-coupling spectral asymptotics, and in particular
the exponentiality of the Kondo scale, cannot be described. Variants of it, involving self-
consistent renormalization and/or partial resummation, have met with mixed success (see
e.g. [17]) and are again restricted in practice to weak/moderate interactions.

While much has been learnt from all of the above approaches, it is clear from the
brief discussion given that there is a need for the development of further, necessarily
approximate, many-body theories; particularly in the strong-coupling regime. One such
is described in this paper. We begin with an underlying mean-field theory and its associated
spin fluctuations; single-particle processes are then coupled dynamically to low-energy spin
excitations, leading to a many-body description of the single-particle spectra. In this sense,
our approach is quite conventional. But it is unconventional in that, as in Anderson’s
original seminal paper [1], the ‘zeroth-order’ mean-field approach from which we start is
unrestricted Hartree–Fock (UHF), in which the notion of an impurity local moment enters
explicitly from the outset. The deficiencies of this simple mean-field approximationper se
are sufficiently severe that there have been few attempts to use it as the basis for a genuine
many-body theory. In section 2 of this paper, however, we argue that the specific nature of
its deficiencies, particularly with regard to associated spin fluctuations in the transverse spin
channel, suggest what is required to successfully transcend it. This is considered explicitly
in section 3 via a ‘two-self-energy’ description of the impurity Green functions; and with a
specific approximation employed for the self-energies that is motivated on physical grounds,
since it captures the dynamical spin-flip scattering required in particular to describe the
Kondo, or spin-fluctuation, limit.

The desiderata outlined above are quite satisfactorily achieved by the resultant theory.
In section 4 the strong-coupling behaviour of the impurity spectrum is established analyt-
ically. We consider first the spectral asymptotics at low energies, in particular the origin
and U -dependence of the Kondo scale and the emergence of Fermi liquid behaviour;
and then, in close parallel, the corresponding asymptotic behaviour of the high-energy
satellite bands. From the former, the further physical significance of the Kondo scale
within the present approach is also apparent, in that it sets the timescale(∼1/ωK) for
restoration of the locally broken symmetry inherent in the zeroth-order mean-field level of
description.

While our general analysis assumes only that the host is metallic, with a symmetric
hybridization function, we consider in section 5 the particular, common case of a flat-band
host. Illustrative spectra are shown, including the low-energy scaling behaviour as the
spin-fluctuation limit is approached; the role of additional scattering processes is considered
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briefly; and two simple, heuristic extensions are described that serve further to illustrate the
generality of the underlying approach. The paper concludes with a brief summary.

2. Motivation

With the Fermi level taken as the energy origin, the Hamiltonian for the spin-1
2 Anderson

model is given in standard notation by

Ĥ = Ĥhost+ Ĥimpurity+ Ĥhybridization (2.1)

=
∑
k,σ

εkn̂kσ +
∑
σ

(
εi + U

2
n̂i−σ

)
n̂iσ +

∑
k,σ

Vik(c
†
iσ ckσ + c†kσ ciσ ) (2.2)

with εk the host dispersion,Vik the hybridization andεi the impurity level; for the symmetric
Anderson model considered here,εi = −U/2 with U the on-site interaction.

We consider the zero-temperature single-particle impurity Green function, defined by

G(t) = −i
〈
T {ciσ (t)c†iσ }

〉
= G+(t)+G−(t) (2.3)

and separated for later purposes into retarded (+, t > 0) and advanced (−, t 6 0)
components; sinceĤ is invariant underσ → −σ (‘up–down spin symmetry’),G is
naturally independent of spin,σ . In the non-interacting limit, whereεi = −U/2 = 0,
the Green function is given by

g(ω) = [ω + iη sgn(ω)−1(ω)]−1 η→ 0+ (2.4)

with hybridization function

1(ω) =
∑
k

|Vik|2
ω − εk + iη sgn(ω)

(2.5a)

= 1R(ω)− i sgn(ω)1I(ω). (2.5b)

We consider throughout a symmetric hybridization,1(ω) = −1(−ω), such that

1R(ω) = −1R(−ω) (2.6a)

1I(ω) = 1I(−ω) = 10+O(ω2) (2.6b)

where10 is thus defined quite generally; the usual flat-band model [2] with infinite band-
width (D→∞) is a particular case of equation (2.6), for which1R(ω) = 0 and1I(ω) = 10

for all ω.
From particle–hole symmetry the Fermi level remains pinned atω = 0 for all U > 0;

likewise the impurity chargeni =
∑

σ

〈
n̂iσ
〉 = 1 ∀U . The impurity Green function

G(ω) = X(ω)− iπ sgn(ω)D(ω) (=−G(−ω) by particle–hole symmetry) may be written as

G(ω) = [ω + iη sgn(ω)−1(ω)−6(ω)]−1 (2.7)

where the (local) interaction self-energy

6(ω) = 6R(ω)− i sgn(ω)6I(ω) (2.8)

such that6(ω) = −6(−ω), is defined by equation (2.7) and excludes the trivial Hartree
contribution (of(U/2)ni = U/2, which cancelsεi = −U/2). For Fermi liquid behaviour
to be satisfied,6I(ω) ∼ O(ω2) asω→ 0, and from equation (2.7) the low-ω behaviour of
G(ω) thus takes the familiar quasiparticle form

G(ω) = Z

ω + i sgn(ω)Z(10+O(ω2))
(2.9a)
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in terms of the quasiparticle weight

Z =
[

1−
(
∂

∂ω
[6R(ω)+1R(ω)]

)
ω=0

]−1

(2.9b)

which in strong coupling is proportional to the Kondo scale,Z ∝ ωK. From (2.9a)
follows directly a well known result [2] that proves important in our subsequent theory:
G(ω = 0) = g(ω = 0), whence the single-particle spectrum is pinned at the Fermi level;
that is

D(ω = 0) = (π10)
−1 ∀U. (2.10)

Equation (2.9a) forms a starting point for microscopic Fermi liquid theory (see e.g. [2]),
and is naturally applicable on the lowest energy scales relevant to the Kondo resonance. But
by itself, of course, and granted even a knowledge ofZ ∝ ωK, it says nothing about the high-
energy single-particle excitations embodied in the Hubbard bands, whose characteristics are
in turn closely related to the existence of the low-ω Kondo scale (see sections 2.1, 4.2).
For this a theory is required that simultaneously covers all energy scales, while reproducing
correctly the low-frequency quasiparticle form, equation (2.9a). Finite-order perturbation
theory inU about the non-interacting limit [15, 16] is an obvious candidate, but is well
known to be unable to describe the exponential strong-coupling asymptotics of the Kondo
scale. A somewhat more radical approach is perhaps required.

2.1. Mean field

As known since Anderson’s original paper [1], unrestricted Hartree–Fock (UHF) is the
simplest (indeed only) mean-field approximation in which the notion of an impurity local
moment (µi), regarded as the first effect of electron interactions and determined self-
consistently, enters explicitly from the outset:µi = 〈n̂i↑ − n̂i↓〉0, with 〈· · ·〉0 an average
over the mean-field ground state. There are two reasons for first considering this simple
approximation, and its associated spin fluctuations (section 2.2). First, rather prosaically,
because the UHF Green functions essentially form the bare propagators for our subsequent
theory. The second relates to its deficiencies. These are well known forrestrictedHartree–
Fock (RHF, whereµi = 0 is enforced for allU ); but are quite different for UHF, careful
scrutiny of which suggests what is required to circumvent its limitations.

The essential feature of UHF is that, when local moments exist, two degenerate self-
consistent solutions are possible:µi = +|µ| and−|µ|. Accordingly, the totalσ -spin Green
function is given by

G0(ω) = 1

2
[GAσ (ω)+ GBσ (ω)] (2.11)

reflecting the equal probability with which the moment may be found up (‘A’,µi = +|µ|)
as down (‘B’); and where, withα = A or B and σ = +/− for ↑/↓ spins, the
Gασ (ω) = ReGασ (ω)− iπ sgn(ω)D0

ασ (ω) are given by

Gασ (ω) =
[
ω + iη sgn(ω)−1(ω)− 6̃0

ασ (ω)
]−1

(2.12a)

with UHF interaction self-energies

6̃0
Aσ (ω) = −

σ

2
U |µ| = −6̃0

Bσ (ω). (2.12b)

The corresponding spectral densities are thus simply

D0
Aσ (ω) =

1I(ω)π
−1

[ω + (σ/2)U |µ| −1R(ω)]2+ [1I(ω)]2
(2.12c)
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(and analogously forD0
Bσ (ω)), representing essentially the UHF approximations to the lower

(∼D0
A↑(ω)) and upper (∼D0

A↓(ω)) Hubbard satellites; in the flat-band case, they are simple

Lorentzians of half-width10, centred onω = ∓ 1
2U |µ|.

There are two important basic symmetries, namely

D0
Aσ (ω) = D0

B−σ (ω) (2.13a)

= D0
A−σ (−ω) (2.13b)

reflecting respectively up–down spin symmetry (GAσ (ω) = GB−σ (ω)) and particle–hole
symmetry (Gασ (ω) = −Gα−σ (−ω)). From the former it follows thatG0(ω) (equation
(2.11)) is correctly independent of spin,σ ; while from the latter,

G0(ω) = −G0(−ω). (2.14)

The UHF equations are naturally closely related to those of the so-called alloy analogy
approximation (AAA) arising to lowest order in an equation-of-motion approach (see
e.g. [18]), but with one exception: in the AAA, equations (2.11)–(2.14) hold but with
the impurity local moment|µ| = 1 ∀U , while for UHF by contrast|µ| is determined
self-consistently from

|µ| =
∫ 0

−∞
dω [D0

A↑(ω)−D0
A↓(ω)]. (2.15)

For the flat-band case, this is given explicitly by

|µ̃| = tan−1(Ũ |µ̃|) (2.16a)

where

Ũ = U/π10 |µ̃| = π

2
|µ|. (2.16b)

Ũ is the reduced (dimensionless) interaction strength. From equation (2.16a), Ũc = 1 is the
boundary to impurity local moment formation: for̃U < 1, |µ| = 0 is the sole solution, and
UHF coincides with RHF. ForŨ > 1 the self-consistent|µ| increases quite rapidly with
Ũ—the impurity moment is well developed bỹU ∼ 2 (where|µ| ∼ 3/4)—and|µ| → 1 in
strong coupling,Ũ →∞, where the AAA is recovered.

Although both the atomic limit (10 = 0) and the non-interacting limit are correctly
recovered by UHF, the deficiencies of the approximation are of course severe: forŨ < 1
the Green function is triviallyŨ -independent and coincides with the non-interacting limit;
more significantly, forŨ > 1 Fermi liquid behaviour is violated and there is no hint of a low-
frequency Kondo resonance. The latter is inevitable for any inherently static approximation
with anω-independent self-energỹ6ασ (as in equation (2.12b)), since the essence of Fermi
liquid behaviour is the inelasticity of electron scattering near the Fermi level,ω = 0.

The virtue of UHF is that it describes the high-energy Hubbard satellites, centred on
ω ∼ ±U/2 in strong coupling. Yet even here it is unsatisfactory, as shown by a simple
physical argument (illustrated for simplicity with reference to the flat-band case). Consider
the upper Hubbard band (UHB) in strong coupling, and imagine adding an↑-spin electron
to a ↓-spin occupied (B-type) impurity. UHF is a static approximation, whence only the
added↑ spin can hop, its rate of loss from the impurity site being10. Thus, the UHF result
for the UHB is

G0(ω) ' 1

2
GB↑(ω) ∼ 1/2

(ω − U/2)+ i10
UHF (2.17a)

(as follows directly from equations (2.11), (2.12)), leading to a Lorentzian band of width10.
But in reality, having added an↑-spin electron to a↓-spin occupied impurity, the↓ spin
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itself can clearly hop off the site, leaving behind a spin flip on the impurity. The energy
cost for the spin flip is of the order of the Kondo scaleωK which, being exponentially small
in strong coupling, is immaterially small on the scaleω ∼ U/2 � ωK appropriate to the
UHB: the ↓-spin electron itself thus has a loss rate10, the total loss rate from the site is
then 210, whence

G(ω) ' 1/2

(ω − U/2)+ 2i10
(2.17b)

(and analogously for the lower Hubbard band), producing a Lorentzian Hubbard satellite of
width 210. The occurrence of additional spectral broadening is well known (see e.g. [11]),
but its physical origin is evidently simple and closely connected to the existence of the low-
frequency spin-flip scale. While a static approximation such as UHF cannot describe the
additional many-body broadening, it is clear from the simple physical considerations above
what is required to transcend it: single-particle processes must be coupled dynamically to
low-frequency spin fluctuations. We consider first the latter.

Π

i

+...+
+-

i i

i
i

i

i

i

ii =

i

i

(a)

i

i

Figure 1. Particle–hole ladder sum in the transverse spin channel, for5+−ii . Bare propagators
are denoted by solid lines, the on-site interactions by wiggles. For5−+ii , the spins are reversed.

2.2. Spin fluctuations

2.2.1. Propagator for transverse spin excitations.We focus on spin fluctuations in the
transverse spin channel, reflected in the polarization propagators5+−ii (t) = i〈T {S+i (t)S−i }〉
and5−+ii (t). These are given at the simplest level of approximation by the ladder sum of
repeated particle–hole interactions shown in figure 1; bare UHF propagators are denoted by
solid lines, and the on-site interaction (conserving spin at each vertex end) by a wiggly line.
The bare polarization bubble, diagram (a) in figure 1, is given explicitly by

05+−αα (ω) = i
∫ ∞
−∞

dω1

2π
Gα↓(ω1)Gα↑(ω1− ω) (2.18)

(whereα = A or B); the corresponding05−+αα (ω) bubble follows simply by interchanging
the spin labels,↑↔↓, in equation (2.18). Note that the four transverse spin-polarization
bubbles coincide only for|µ| = 0; in general, for|µ| 6= 0, they are distinct, although related
by the following symmetries. From up–down spin symmetry (equation (2.13a)) it follows
directly that

05+−αα (ω) = 05
−+
ᾱᾱ (ω) (2.19a)

where ᾱ = B or A for α = A or B respectively; while a simple change of variables in
equation (2.18) gives

05+−αα (ω) = 05
−+
αα (−ω). (2.19b)
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From equations (2.19), only05+−AA need be considered: the remaining05s follow from it.
The ladder sum of figure 1 is given simply by the RPA form

5+−αα (ω) = 05
+−
αα (ω)/(1− U05

+−
αα (ω)) (2.20)

to which the symmetries in equation (2.19) likewise apply. And the real/imaginary parts of
both the05s and5s are related via the Hilbert transform

5+−αα (ω) =
∫ ∞
−∞

dω1

π

Im5+−αα (ω1) sgn(ω1)

ω1− ω − iη sgn(ω1)
(2.21a)

in particular,

Re5+−αα (ω = 0) =
∫ ∞
−∞

dω1

π

Im5+−αα (ω1)

|ω1| > 0 (2.21b)

the positivity of which follows since Im5+−αα (ω) > 0.
The low-frequency behaviour of5+−AA (ω) follows from that of 05+−AA (ω). From equ-

ation (2.18), usingGασ (ω) = G+ασ (ω)+ G−ασ (ω) and the Hilbert transform

G±ασ (ω) =
∫ ∞
−∞

dω1
D0
ασ (ω1)θ(±ω1)

ω − ω1± iη
(2.22)

(with θ(ω) the unit step function), a simple calculation gives

1

π
Im 05+−AA (ω) = θ(ω)

∫ |ω|
0

dω1 D
0
A↓(ω1)D

0
A↑(ω1− ω)

+ θ(−ω)
∫ 0

−|ω|
dω1 D

0
A↓(ω1)D

0
A↑(ω1− ω). (2.23a)

Thus, sinceD0
ασ (ω = 0) is non-vanishing at the Fermi level,

1

π
Im 05+−AA (ω)

ω→0∼ |ω|D0
A↓(0)D

0
A↑(0) (2.23b)

vanishes linearly in|ω| asω → 0. Consider now Re05+−AA (ω), in particular forω = 0.
Using equation (2.22) together with the identity

GA↑(ω)− GA↓(ω) = −U |µ|GA↓(ω)GA↑(ω) (2.24)

(that follows from equation (2.12)), equation (2.18) yields

U Re05+−AA (ω = 0) = 1

|µ|
∫ 0

−∞
dω [D0

A↑(ω)−D0
A↓(ω)]. (2.25a)

For the flat-band case in particular, this is given explicitly by (cf. equations (2.15), (2.16))

U Re05+−AA (ω = 0) = 1

|µ̃| tan−1(Ũ |µ̃|). (2.25b)

2.2.2. Low-energy spin-flip scale.Since Im05+−AA (ω = 0) = 0, the behaviour of
5+−AA (ω = 0) (equation (2.20)) is controlled by Re05+−AA (ω = 0). A number of important
observations then follow directly from equation (2.25).

(i) Consider firstrestrictedHF, where|µ| = 0 is enforced for allU (the same results
naturally hold for UHF when|µ| = 0). From equation (2.25b) appropriate to the flat-band
case, equation (2.20) yields

π10 Re5+−AA (ω = 0) = [1− Ũ ]−1 RHF. (2.26)
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For Ũ = U/π10 > 1—where UHF predicts an impurity local moment—equation (2.26)
violates the positivity condition, equation (2.21b). This is well known (see e.g. [2]): it
simply reflects the fact that the single-determinantal RHF mean-field state is unstable to
particle–hole excitations—which is of course what is probed by the RPA5 [19]—and in
that sense is thus physically unacceptable forŨ > 1.

(ii) This is in contrast to the mean-field UHF state with|µ| 6= 0: it is not unstable
to particle–hole excitations. At pure UHF level, quite generally, the local moment is
determinedself-consistentlyfrom equation (2.15) (or (2.16) for the specific flat-band case);
which solution we denote from now on by|µ| = |µ0|. From equation (2.25a) it follows
directly thatU Re05+−AA (ω = 0) = 1, and in consequence the transverse spin5+−AA (ω) has a
pole atω = 0. While the mean-field state is stable, theω = 0 pole arises physically because
the UHF ground state is a degenerate doublet, whence there is no energy cost to flip a spin.
Physically, this behaviour is entirely correct for aninsulatinghost—where the hybridization
1I(ω) has a gap in the vicinity of the Fermi level,ω = 0. But it is clearly incorrect for the
Fermi liquid ground state of the gapless Anderson model where the characteristic energy
for spin-flip excitations is finite and of the order of the Kondo scale.

(iii) The latter behaviour is howeverentirely specific to the UHF level of local moment
self-consistency: U05+−AA (ω = 0) = 1 if and only if |µ| = |µ0|, as follows from
equation (2.25a). In the flat-band case, for example, it is readily shown explicitly from
equation (2.25b) (see also below) thatU05+−AA (ω = 0) < 1 for any |µ| > |µ0|. In
describing single-particle spectra beyond pure UHF level, as in the following sections,
this is the relevant case: the local moment|µ| will no longer be given by the UHF self-
consistency equation (2.15), anω = 0 spin-flip pole will no longer arise, and Im5+−AA (ω)

will instead contain a resonance centred on some non-zero frequency,ωm. As will be seen,
this is in part the origin of the self-consistently determined Kondo scale within the present
approach.

From the above we will clearly require, forarbitrary |µ|, theω-dependence of05+−αα (ω)
(and hence5+−αα ), technical details of which are now given. For the specific flat-band case,
05+−αα (ω) can be found analytically; the result is given in the appendix. To obtain the
low-ω behaviour of5+−αα (ω), and in particular the above-mentioned resonance, we perform
a low-frequency expansion of05+−AA (ω) = Re05+−AA (ω) + i Im 05+−AA (ω) as follows, quite
generally.

10 Im 05+−AA (ω) = c|ω̃| +O(ω̃2) (2.27)

where

ω̃ = ω/10 (2.28)

is the reduced frequency; the coefficientc follows from equation (2.23b) (using equation
(2.12c)), and is given generally by

c = 1

π(x2+ 1)2
(2.29)

where (see also equation (2.16b))

x =
1
2U |µ|
10

= Ũ |µ̃|. (2.30)

Similarly, defining

d(ω) = 1

U
− Re05

+−
AA (ω) (2.31a)
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we expand

10d(ω) = d0− d1ω̃ + d2ω̃
2+O(ω̃3) (2.31b)

where, from equation (2.25a),

d0 = 1

πŨ

{
1− 1

|µ|
∫ 0

−∞
dω [D0

A↑(ω)−D0
A↓(ω)]

}
. (2.32a)

The coefficientsdi follow from the low-ω asymptotics of Re05+−AA (ω), given explicitly in
the appendix for the flat-band case, and for which

d0 = 1

πŨ

{
1− tan−1(Ũ |µ̃|)

|µ̃|

}
(2.32b)

d1 = 1

2πx

{
1

x
tan−1(x)+ (x2− 1)

(x2+ 1)2

}
> 0. (2.32c)

Equations (2.20) and (2.31) yield (generally)

10 Re5+−AA (ω = 0) = (1− πŨd0)

(πŨ)2d0

(2.33a)

whence the stability condition equation (2.21b) is satisfied provided

06 πŨd0 < 1. (2.33b)

For the flat-band case, using equation (2.32b), this amounts simply to the above-mentioned
condition that, for any choseñU , |µ̃| > |µ̃0| (with |µ̃0| = tan−1(Ũ |µ̃0|) the pure UHF local
moment).

As mentioned above, Im5+−AA (ω) contains in general a low-frequency resonance. To
illustrate this at a simple (and in practice numerically very accurate) level, consider anω-
interval sufficiently close toω ' 0 that05+−AA (ω) itself is dominated by its low-ω behaviour.
From equations (2.27), (2.31) and (2.20), theω-dependence of Im5+−AA (ω) is then given
explicitly by

10 Im5+−AA (ω) '
A

ω̃m

∣∣ω′∣∣
1− 2αω′ + ω′2 (2.34a)

in terms of the scaled frequency

ω′ = ω̃/ω̃m (2.34b)

where

ω̃m = d0√
c2+ d2

1 + 2d0d2

(2.34c)

andA andα ∈ (0, 1) are likewiseŨ -dependent coefficients given by

A = 1

(πŨ)2

c

(c2+ d2
1 + 2d0d2)

(2.35a)

α = d1√
c2+ d2

1 + 2d0d2

. (2.35b)

The resonant structure of Im5+−AA (ω) is immediately apparent from equation (2.34a),
whose maximum value occurs (for anyα ∈ (0, 1)) at ω′ = 1: the resonance is thus centred
on ω̃ = ω̃m given explicitly by equation (2.34c). For illustration, Im5+−AA (ω) is shown in
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Figure 2. Im5+−AA (ω) versusω̃ = ω/10 for the flat-band case, with̃U = U/π10 = 4 and
|µ|/|µ0| = 1.001, showing the low-ω spin-flip resonance. There are no further spectral features
outside the range shown. Inset: the corresponding Im05

+−
AA (ω), showing the high-energy Stoner

band. Note the very different scales in the two figures.

figure 2 for the flat-band case with̃U = 4 and |µ|/|µ0| = 1.001, and compared to the
corresponding Im05+−AA (ω) (equation (A.2)). The latter consists simply of a high-energy
Stoner band centred (see (A.2)) onω̃ ∼ U |µ|/10 = 2Ũ |µ̃| ∼ 101. For Im5+−AA (ω) by
contrast, it is seen that the vast majority of the spectral weight has been transferred to
the low-ω resonance centred on the much smaller spin-flip scaleω̃m ∼ 10−2, the intuitively
obvious importance of which will be made explicit in the following sections where a specific
criterion for self-consistently determining the local moment will be given.

3. Green functions

3.1. Two-self-energy description

In going beyond the simple mean-field approximation, single-particle processes must be
coupled dynamically to the low-energy spin-flip excitations, as discussed in section 2.1. To
this end the exactσ -spin impurity Green function is first expressed formally as

G(ω) = 1

2
[GAσ (ω)+GBσ (ω)] (3.1)

where

Gασ (ω) = [ω + iη sgn(ω)−1(ω)− 6̃ασ (ω)]−1 (3.2)

with ω-dependent interaction self-energies6̃ασ (ω). As at UHF level (equation (2.13)),
up–down spin symmetry and particle–hole symmetry for the spectral densitiesDασ (ω) =
−π−1 sgn(ω) ImGασ (ω) imply

DAσ (ω) = DB−σ (ω) (3.3a)

= DA−σ (−ω) (3.3b)

respectively. For the associated Green functionsGασ (ω) = G+ασ (ω) + G−ασ (ω), a Hilbert
transform of equations (3.3) yields directly

G±ασ (ω) = G±ᾱ−σ (ω) (3.4a)

= −G∓α−σ (−ω) (3.4b)
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(whereᾱ = B or A for α = A or B); from which, since1(ω) = −1(−ω), it follows from
equation (3.2) that

6̃ασ (ω) = 6̃ᾱ−σ (ω) (3.5a)

= −6̃ᾱσ (−ω). (3.5b)

Likewise, equations (3.4) with (3.1) yield

G(ω) = −G(−ω) (3.6a)

and show also thatG(ω) is correctly independent of spin,σ ; while equation (3.6a) itself
correctly implies

6(ω) = −6(−ω) (3.6b)

for the interaction self-energy defined by equation (2.7). Notice further from equations
(3.1), (3.2) and (2.10) that a necessary/sufficient condition for the single-particle spectrum
D(ω = 0) to be pinned at its non-interacting value (or equivalently for the Friedel sum rule
to be satisfied) is

6̃ασ (ω = 0) = 0. (3.7)

Equations (3.3)–(3.6) merely express basic symmetries, which must of course be satisfied
by any approximate theory. Equation (3.5) in particular shows that it is sufficient to consider
only one of the6̃ασ (ω), say 6̃A↑(ω): the remainder follow from it by symmetry.G(ω)
then follows from equations (3.1) and (3.2); direct comparison of which with equation (2.7)
permits, if desired,6(ω) to be related to6̃A↑(ω); specifically

6(ω) =
1
2{6̃A↑(ω)− 6̃A↑(−ω)+ 2g(ω)6̃A↑(ω)6̃A↑(−ω)}

1− 1
2g(ω)[6̃A↑(ω)− 6̃A↑(−ω)]

(3.8)

whereg(ω) is the non-interacting Green function, equation (2.4).
The 6̃ασ (ω) are naturally not calculable exactly, but diagrammatic perturbation theory,

expressed in terms of the bare propagatorsGασ (ω) (equation (2.12a)) and interactionU ,
can be employed to construct suitable approximations as described in section 3.2. In this
regard it is helpful to separate the full interaction self-energies as

6̃Aσ (ω) = −σ
2
U |µ| +6Aσ (ω) (3.9)

where the6ασ (ω)—to which the symmetries equations (3.5) also apply—exclude the first-
order ω-independent UHF-type contribution of±U |µ|/2, and contain the dynamics on
which we wish to focus. This we now consider.

3.2. Self-energy approximation

The basic approximation we consider for the self-energies6ασ (ω) is shown in figure 3(a),
using the same diagrammatic notation as figure 1. It vanishes in the atomic limit and—
considering the forward time direction for convenience—describes processes in which
having added, say, aσ = ↑-spin electron to a−σ = ↓-spin occupied (B-type) impurity
at t = 0, the ↓ spin already present hops off the site leaving behind it a spin flip,
before returning again at a later time,t . All ladder interactions of the resultant particle–
hole pair—reflecting the created spin flip—are included; their sum is exactlyU25−+ii (ω)
(=U25+−ii (−ω)) as given by figure 1 and equation (2.20). The approximation is motivated
on physical grounds: it captures the dynamical spin-flip scattering argued for physically
in section 2.1, and known e.g. from Anderson’s poor man’s scaling [20] to be essential
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Figure 3. (a) The basic approximation to6iσ used in
the present work, with the same notation as figure 1.
(b) Equivalent recasting of (a), including ingoing and
outgoing σ -spin propagators, to illustrate the spin-flip
scattering involved.

in describing the Kondo limit; this is particularly clear from the equivalent recasting of
6ασ (ω) shown in figure 3(b).

Explicitly, 6A↑(ω) is given by

6A↑(ω) = U2
∫ ∞
−∞

dω1

2π i
5+−AA (ω1)GA↓(ω1+ ω). (3.10)

Using the spectral representation for5+−AA (ω), equation (2.21a), together with

G±ασ (ω) =
∫ ∞
−∞

dω1

2π i

Gασ (ω1)

ω − ω1± iη
(3.11)

equation (3.10) reduces to

6A↑(ω) = U2
∫ ∞
−∞

dω1

π
Im5+−AA (ω1)

[
θ(ω1)G−A↓(ω1+ ω)+ θ(−ω1)G+A↓(ω1+ ω)

]
(3.12)

from which the low-frequency behaviour of Im6A↑(ω) is now readily deduced. Since
ImG±ασ (ω) = ∓πD0

ασ (ω)θ(±ω) (see equation (2.22)), equation (3.12) yields

Im6A↑(ω) = θ(−ω)U2
∫ |ω|

0
dω1 Im5+−AA (ω1)D

0
A↓(ω1+ ω)

−θ(ω)U2
∫ 0

−|ω|
dω1 Im5+−AA (ω1)D

0
A↓(ω1+ ω) (3.13)

from which follow three important results.

(i) Im6A↑(ω = 0) = 0, i.e. vanishes at the Fermi level.
(ii) Since Im5+−αα (ω) > 0 andD0

ασ (ω) > 0 for all ω, sgn(Im6A↑(ω)) = −sgn(ω),
whence6A↑(ω) is of the form

6A↑(ω) = 6R
A↑(ω)− i sgn(ω)6I

A↑(ω) (3.14a)

with

6I
A↑(ω) > 0. (3.14b)

(iii) Since Im5+−AA (ω) vanishes linearly in|ω| asω→ 0 (see equations (2.23b), (2.20)),

6I
A↑(ω) ∝ ω2 ω→ 0. (3.15a)
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Specifically, from equation (3.13),

6I
A↑(ω)

ω→0∼
(
U2

2
D0

A↓(0) lim
ω→0

(
Im5+−AA (ω)

|ω|
))
ω2 (3.15b)

= U2

2
D0

A↓(0)A
[
ω

ωm

]2

(3.15c)

where equation (3.15c) follows from equation (2.34a) (which, given5+−AA in RPA form, is
asymptotically exact asω→ 0).

For the single-particle spectrum to be pinned at the Fermi level,6̃ασ (ω = 0) = 0
is required (equation (3.7)); and since Im̃6ασ (ω) = Im6ασ (ω) (see equation (3.9)),
Im 6̃ασ (ω = 0) = 0 automatically. From equation (3.9), the requirement that Re6̃ασ (ω =
0) = 0 is

6R
A↑(ω = 0) = 1

2
U |µ|. (3.16)

It is this equation that we use to determine the local moment|µ|: 6R
A↑(ω), given explicitly

from equation (3.12), is itself a function of|µ| via the dependence of5+−AA andG±A↓ thereon,
whence equation (3.16) is a self-consistency equation for|µ|. The local moment is thus
self-consistently determined by enforcing theω = 0 pinning of the single-particle spectrum,
or equivalently the Friedel sum rule. We add that there is ample precedent for enforcing
the Friedel sum rule: it is for example employed in phenomenological Fermi liquid theory
(see e.g. [2, 21]) and, for the asymmetric Anderson model in particular, in studies using
conventional finite-order perturbation theory inU about the non-interacting limit [16]. And
its consequences are far reaching, particularly in the strong-coupling regime of central
interest, as will be seen in the following sections.

Before proceeding we comment briefly on the functional form of the self-consist-
ency equation (3.16), with6A↑(ω) given by equation (3.12). The bare propagatorsGασ
(equation (2.12)), and hence05+−AA (equation (2.18)), depend onU and |µ| solely via the
combination1

2U |µ|. Thus, definingx = 1
2U |µ|/10, equation (3.16) is of the form

f (U ; x) = x x = 1

2
U |µ|/10 (3.17)

where the explicitU -dependence off (U ; x) = 1−1
0 6R

A↑(ω = 0) stems simply from the

dependence of5+−AA = 05
+−
AA /(1 − U05

+−
AA ) on U itself, and from the prefactorU2 in

equation (3.12). Equation (3.17) is most efficiently solved either forx, givenU , or for U ,
given x; |µ| is thereby obtained self-consistently as a function ofU .

4. Strong-coupling asymptotics

The procedure for determining the impurity Green function is simply summarized:G(ω) is
given by equations (3.1), (3.2), with interaction self-energy6̃A↑(ω) = − 1

2U |µ| + 6A↑(ω)
(equation (3.9)), and6A↑(ω) given explicitly by equation (3.12); the remaining̃6ασs
follow by symmetry, equation (3.5), specificallỹ6B↑(ω) = −6̃A↑(−ω); and the local
moment is determined self-consistently from equation (3.16). This permits a straightforward
determination of the single-particle spectrum for an arbitrary symmetric hybridization
function satisfying equation (2.6); resultant spectra for the particular flat-band case will
be shown in section 5.

In this section we seek first to establish theU → ∞ strong-coupling asymptotics.
We consider separately (i) the spectral asymptotics at low energies, in particular the origin
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andU -dependence of the Kondo scale, the emergence of Fermi liquid behaviour and the
quasiparticle form (equation (2.9a)) for G(ω); and, relatedly, (ii) the asymptotic behaviour
of the high-energy Hubbard satellites.

4.1. Low energies

4.1.1. Kondo scale. The low-frequency behaviour of Im6A↑(ω) has been established in
the previous section, equations (3.13)–(3.15). We now consider the low-ω behaviour of
6R

A↑(ω), beginning with6R
A↑(ω = 0) given explicitly from equation (3.12) by

6R
A↑(ω = 0) = U2

∫ ∞
−∞

dω1

π
Im5+−AA (ω1)

[
θ(ω1)ReG−A↓(ω1)+ θ(−ω1)ReG+A↓(ω1)

]
.

(4.1)

Im5+−AA (ω) has been illustrated in figure 2, and theU →∞ asymptotic form of6R
A↑(0) is

readily deduced from two properties of Im5+−AA (ω).

(i) First, asU → ∞, the spectral weight of Im5+−AA (ω) is confined entirely to freq-
uenciesω > 0; specifically, one finds∫ ∞

0

dω

π
Im5+−AA (ω)

U→∞∼ 1 (4.2)

which behaviour reflects physically the saturation of the local moment in strong coupling;
the corrections to equation (4.2) are at leastO(U−1) (and preciselyO(U−1) for the flat-band
case). By contrast, the integrated spectral weight of Im5+−AA (ω) for frequenciesω < 0 is
found to be at leastO(U−1). In consequence, the second term on the right-hand side of
equation (4.1) may be neglected in determining the strong-coupling asymptotics of6R

A↑(0).
(ii) As illustrated in figure 2, the resonance in Im5+−AA (ω) occurs on a low-energy

spin-flip scale,ωm, that is found to diminish rapidly with increasingU (and whose explicit
U -dependence we establish below). Im5+−AA (ω) is thus effectively non-zero only on the
scale ofωm; and on scales of this order,G−A↓(ω) is a slowly varying function of frequency.
Equation (4.1) thus reduces asymptotically to

6R
A↑(ω = 0)

U→∞∼ U2 ReG−A↓(ωm)

∫ ∞
0

dω1

π
Im5+−AA (ω1)

= U2 ReG−A↓(ωm). (4.3)

Consider now the low-ω behaviour of ReG−A↓(ω) itself, given by

ReG−A↓(ω) =
∫ 0

−∞
dω1D

0
A↓(ω1)P

(
1

ω − ω1

)
(4.4)

as a one-side Hilbert transform of the spectral densityD0
A↓(ω) (equation (2.12c)). The

ω→ 0 behaviour of ReG−A↓(ω) is dominated by the logarithmic singularity arising necess-
arily becauseD0

A↓(ω = 0) is non-vanishing. This asymptotic behaviour is captured by

ReG−A↓(ω)
ω→0∼ D0

A↓(0)
∫ 0

−U
dω1 P

(
1

ω − ω1

)
(4.5a)

= D0
A↓(0) ln

(
U

|ω|
)

(4.5b)

where we have introduced a high-energy cut-off of orderU . The latter is appropriate in
the limit that the host bandwidthD → ∞; for finite D, a cut-off of order min(D,U) is
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instead appropriate. The specific cut-off used is inessential to the following arguments: the
important point is that, asω→ 0, the prefactor to the log divergence is preciselyD0

A↓(0),
itself given in general from equation (2.12c) by

D0
A↓(0) =

10π
−1

( 1
2U |µ|)2+12

0

(4.6)

(where1R(ω = 0) = 0 from equation (2.6a), and10 = 1I(ω = 0)). This is confirmed by
explicit calculation of ReG−A↓(ω) for the particular flat-band case, which gives

ReG−A↓(ω) = D0
A↓(ω)

{
ln

[
[x2+ 1]1/2

|ω̃|
]
+ (ω̃ − x)

[π
2
− tan−1(x)

]}
(4.7)

whereω̃ = ω/10 andx = 1
2U |µ|/10.

In strong couplingU →∞ (|µ| → 1), equation (4.6) gives quite generally

D0
A↓(0)

U→∞∼ 1

U2

410

π
(4.8a)

= 1

U2

4

π2D(0)
(4.8b)

whereD(0) = (π10)
−1 is the Fermi level spectral density (equation (2.10)); whence from

equations (4.3), (4.5),

6R
A↑(ω = 0)

U→∞∼ 4

π2D(0)
ln

(
U

ωm

)
. (4.9)

The U -dependence ofωm now follows immediately from the condition, equation (3.16),
that the single-particle spectrum be pinned at the Fermi level, namely

6R
A↑(ω = 0)

U→∞∼ U

2
. (4.10)

Equations (4.9), (4.10) yield

ωm
U→∞∼ U exp

(−π2

8
D(0)U

)
(4.11a)

= U exp

(−πU
810

)
. (4.11b)

This is the Kondo scale, exponentially small in strong coupling. While the prefactor to the
exponential, of orderU (or min(D,U)), merely reflects the cut-off used in equation (4.5a),
the exponent itself is linear inU , with coefficient−π/810. This agrees precisely with the
Betheansatzresult [3] for the flat-band case (although equation (4.11) itself is not restricted
to that case).

The above result for the Kondo scale has been obtained by simple, rather general
arguments. We have further confirmed it both by direct numerical calculation (see also
section 5) and, for the flat-band case, analytically: equation (2.34) for Im5+−AA (ω) may
be used in equation (4.1) to determine6R

A↑(0) explicitly; equation (4.11) again results for
ωm, given by equation (2.34c) and corresponding to the maximum in the resonance of
Im5+−AA (ω). The latter may in turn be used to deduce how the self-consistent local moment
|µ| approaches its strong-coupling asymptote of unity, and this we consider briefly.

ω̃m = ωm/10 is given by equation (2.34c), and in strong coupling the coefficient
c ∼ U−4 (see equation (2.29)), while

d1
U→∞∼ (πŨ)−2 = (10/U)

2. (4.12)
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(For the flat-band case this follows directly from equation (2.32c) (x = 1
2U |µ|/10

U→∞∼
U/210); and it is readily shown to be true in general.) From equation (2.34c), sinceω̃m is
exponentially small in strong coupling, so too isd0; hence

ω̃m
U→∞∼ d0

d1
= (πŨ)2d0. (4.13)

d0 is given explicitly by equation (2.32), so for the flat-band case in particular (equation
(2.32b))

ωm

U

U→∞∼
(

1− tan−1(Ũ |µ̃|)
|µ̃|

)
. (4.14a)

This is now solved for|µ̃| = (π/2)|µ| and, sinceωm is exponentially small in strong
coupling, gives

|µ| U→∞∼ |µ0| + ωm

U
(4.14b)

where |µ0| is the pure UHF local moment given via|µ̃0| = tan−1(Ũ |µ̃0|) and such that
|µ0| = 1− (410/πU) + O(U−2). With ωm from equation (4.11), equation (4.14b) gives
explicitly theU -dependence of the local moment|µ| determined self-consistently from the
requirement, equation (3.16), that the single-particle spectrum is pinned at the Fermi level,
ω = 0.

4.1.2. Quasiparticle form. Having established the asymptotics of6R
A↑(ω) at ω = 0, we

consider now its leading low-ω behaviour. This may be determined from equation (3.12), by
differentiating once with respect toω under the integral using the asymptotic form equation
(4.5b) for ReG−A↓(ω1+ω) (and neglecting the second term on the right-hand side of equation
(3.12), for the same reason as in the asymptotic analysis of6R

A↑(ω = 0), equation (4.1) ff ).
This yields

6R
A↑(ω)−6R

A↑(0)
U→∞
ω→0∼ −ω 4

π2D(0)

∫ ∞
0

dω1

π

Im5+−AA (ω1)

|ω1| (4.15)

where equation (4.8) is used forU2DA↓(0). The lower integration limit may be extended
with impunity to ω1 = −∞ asU → ∞: the relative correction isO(U−2) (as may be
verified either numerically or by use of equation (2.34a)). Thus, using equation (2.21b),

6R
A↑(ω)−6R

A↑(0)
U→∞
ω→0∼ −ω 4

π2D(0)
Re5+−AA (ω = 0). (4.16)

Re5+−AA (0) is given explicitly by equation (2.33a) which, using equation (4.13) and the fact

that d0 is itself exponentially small in strong coupling, reduces to Re5+−AA (0)
U→∞∼ 1/ωm.

Hence the desired result

6̃R
A↑(ω) = 6R

A↑(ω)−6R
A↑(0) (4.17)

U→∞
ω→0∼ − 4

π2D(0)

ω

ωm
(4.18a)

= −410

π

ω

ωm
(4.18b)

(where equation (4.17) follows trivially from equations (3.9), (3.16)); we have also
confirmed this numerically. Two further points should be noted.
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(a) The leading low-ω corrections to equation (4.18) areO(ω2 ln |ω|) andO(ω2), the
existence of which may be shown to follow on general grounds from equation (3.12)
for 6R

A↑(ω), due to the necessary logarithmic singularity in ReG−A↓ and the fact that
Im5+−AA (ω)/ω is finite asω→ 0.

(b) Although the explicit coefficient ofω in equation (4.18) is naturally applicable only
in strong coupling, the linearity of the self-energy, namely6̃R

A↑(ω) ∝ ω asω→ 0, is itself
quite general as follows from a low-ω expansion of equation (3.12).

The above results, together with equation (3.15) for the imaginary part of the self-
energy6̃I

A↑(ω) (=6I
A↑(ω) from equations (3.9), (3.14a)), lead directly to the low-frequency

behaviour of the impurity Green functionG(ω). Since6̃R
A↑(ω) ∝ ω and 6̃I

A↑(ω) ∝ ω2 as
ω→ 0, the symmetries, equation (3.5), yield

6̃Aσ (ω) = 6̃Bσ (ω) ω→ 0 (4.19a)

Hence, from equations (3.1), (3.2) forG(ω), together with the definition, equation (2.7), of
the self-energy6(ω),

6̃ασ (ω) = 6(ω) ω→ 0 (4.19b)

(for any σ or α = A, B): the low-frequency asymptotics of̃6A↑(ω) are thus also those
for 6(ω); equations (3.14), (3.15a) in particular reduce to well known exact Fermi liquid
results for6(ω) [22]. From equations (4.19b) and (2.7) it follows immediately that the
low-ω behaviour ofG(ω) takes correctly the quasiparticle form equation (2.9), namely

G(ω) = 1

ω/Z + i sgn(ω)(10+O(ω2))
(4.20)

(to which we note only the real part of6 contributes), the frequency scale of which is set by
10Z. And from equation (4.18b) the quasiparticle weight in the strong-coupling (Kondo)
limit is proportional toωm,

10Z
U→∞∼ π

4
ωm (4.21)

in terms of which the low-ω behaviour ofG(ω) thus scales.
The significance of the Kondo scale within the present approach is further apparent

from the preceding results. Equation (4.19a) shows that on the lowest frequency scales—
or longest timescales—the interaction self-energies6̃ασ (ω) coincide, or equivalently,
GAσ (ω) = GBσ (ω). This reflects physically the restoration at sufficiently long times of the
locally broken symmetry inherent in the zeroth-order mean-field (UHF) level of description,
the characteristic timescale for symmetry restoration being the ‘Kondo spin-flip time’ 1/ωm

in strong coupling (alternatively,ωm itself may be thought of as the rate of interconversion
between the two local moment states A and B).

4.2. High energies

We consider now the strong-coupling asymptotics of the high-energy Hubbard satellites,
centred onω ∼ ±U/2. In particular we show that the additional many-body broadening
therein, argued for on simple physical grounds in section 2.1, emerges straightforwardly
within the present approach.

Consider again equation (3.12) for the self-energy6A↑(ω), and recall from section 4.1.1
that the spectral density Im5+−AA (ω1) occurs on frequency scales of orderωm. Hence, for
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frequencies|ω| � ωm,

U−26A↑(ω)
|ω|�ωm∼ G−A↓(ω)

∫ ∞
0

dω1

π
Im5+−AA (ω1)+ G+A↓(ω)

∫ 0

−∞

dω1

π
Im5+−AA (ω1).

(4.22)

To see the origin of the additional spectral broadening we focus on the imaginary
part of the self-energy, Im6A↑(ω) = −sgn(ω)6I

A↑(ω) (see equation (3.14a)); and
consider for convenience the lower Hubbard band (LHB),ω < 0. Since ImG±A↓(ω) =
−sgn(ω)πD0

A↓(ω)θ(±ω) (from equation (2.22), the second term in equation (4.22) does
not contribute forω < 0. Hence

6I
A↑(ω) = πU2D0

A↓(ω)
∫ ∞

0

dω1

π
Im5+−AA (ω1) (4.23a)

U→∞∼ πU2D0
A↓(ω) (4.23b)

where equation (4.2) is used.D0
A↓(ω) is itself given by equation (2.12c) from which, in

strong coupling and for frequenciesω ∼ −U/2, equation (4.23b) yields

6I
A↑(ω)

U→∞∼ 1I(ω) ω ∼ −U
2
. (4.24)

At frequenciesω ∼ −U/2 in the LHB, the impurity Green function itself is given
explicitly asU → ∞ by G(ω) ∼ 1

2GA↑(ω) (as follows from equation (3.1) noting that
DB↑(ω) = DA↓(ω) is centred onω ∼ +U/2); andGA↑(ω) follows from equation (3.2)

with interaction self-energỹ6A↑(ω)
U→∞∼ − 1

2U +6A↑(ω) (see equation (3.9)). Thus, using
equation (4.24),

G(ω)
U→∞∼

1
2

(ω + 1
2U)− 2i1I(ω)

ω ∼ −U
2

(4.25)

where we have neglected1R(ω) and 6R
A↑(ω) (see below); the corresponding strong-

coupling expression forG(ω) in the upper Hubbard band at frequenciesω ∼ +U/2 follows
trivially from equation (4.25) via the symmetryG(ω) = −G(−ω), and yields precisely
equation (2.17b) for the flat-band case.

The present theory thus captures simultaneously the low-ω Kondo resonance, and the
additional many-body broadening of the Hubbard bands reflected in the doubling of the
satellite widths (21I(ω)).

Finally, we comment briefly on the contribution of6R
A↑(ω) to the Hubbard satellites. We

have neglected it in arriving at equation (4.25) above since it naturally makes no contribution
to the width of the satellites and, as now clarified, givesat mostan O(1) shift in their
positions (i.e.ω ∼ ±(U/2)(1+O(1/U))). To calculate6R

A↑(ω ∼ −U/2) the second term
on the right-hand side of equation (4.22) must be considered explicitly. This can be done
analytically and, for the flat-band case, leads to6̃R

A↑(ω ∼ −U/2) ∼ −(U/2)(1+410/πU);
the Hubbard bands are thus centred onω ∼ ∓(U/2)(1+410/πU) in strong coupling. This
behaviour is however specific to the flat-band problem (with bandwidthD → ∞): for
any other case it may be shown that the leading corrections to the position of the Hubbard
satellites areO(1/U), i.e. they are centred onω ∼ ±(U/2)(1+O(U−2)).

5. Results

The general procedure used to obtain the impurity Green function has been summarized in
section 4. For tangibility we consider now the flat-band case. Figure 4 shows the resultant
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Figure 4. π10D(ω) versusω̃ = ω/10 for the flat-band case with̃U = 6 (solid line), 4 (dashed
line) and 2.5 (dotted line).
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Figure 5. π10D(ω) versusω̃ = ω/10 for the flat-band case with̃U = 0.6 (solid line),
compared to the result from straight second-order perturbation theory inU about the non-
interacting limit (dashed line).

single-particle spectrum,π10D(ω) versusω̃ (=ω/10), for Ũ (=U/π10) = 6, 4 and 2.5.
D(ω) is correctly normalized to unity; and the spectrum is of course pinned at the Fermi
level itself, such thatπ10D(0) = 1. The two expected spectral features are evident: a
many-body Kondo resonance whose width diminishes rapidly with increasingŨ , and the
Hubbard satellites which correspondingly shift to progressively higher frequencies. Before
proceeding we also add that, while naturally designed to capture strong-coupling behaviour,
the present theory is nonetheless well behaved with decreasingŨ , and evolves smoothly to
the non-interacting limit. For illustration figure 5 shows the impurity spectrum forŨ = 0.6,
compared to the result from straight second-order perturbation theory inU about the non-
interacting limit, from which it differs only slightly and to which it reduces precisely to
(and including)O(U2) asU → 0.

The approach to strong-coupling behaviour is seen clearly in theŨ -dependence of
ω̃K = ωK/10, defined as the half-width at half-maximum ofD(ω) (and reducing to the
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Figure 6. Strong-coupling behaviour of the Kondo scale: lnω̃K versusŨ for the flat-band case
(solid line), compared to the asymptotic form̃ωK = βŨ exp(−π2Ũ/8) with β = 0.24 (dashed
line). Inset: self-consistent local moment|µ| versusŨ (solid line), contrasted with its UHF
counterpart|µ0| (dashed line).

Kondo scale in strong coupling whereωK ∝ ωm). Figure 6 shows lñωK versusŨ , and
confirms the analytic result of the preceding sections: the strong-coupling asymptote is
found to beω̃K ∼ βŨ exp(−π2Ũ/8) in agreement with equation (4.11), with the constant
β = 0.24 determined numerically. The inset to figure 6 shows also theŨ -dependence of
the self-consistent local moment|µ|, compared to its UHF counterpart|µ0|. For Ũ < Ũ0,
|µ| = 0 and Re5+−AA (ω = 0) ∝ [1 − Ũ ]−1 is thus given by equation (2.26). The self-
consistent determination of|µ| is however seen to reducẽU0 to ∼0.94 from Ũ0 = 1 at
mean-field level, whencẽU = Ũ0 no longer corresponds to an instability: Re5+−AA (0)
evolves smoothly as̃U passes through̃U0, and is both positive definite and finite for all
Ũ . For Ũ > Ũ0, |µ| increases strongly and rapidly becomes exponentially close to|µ0| (as
argued in section 4.1; see equation (4.14b)). In fact, from the behaviour of both̃ωK and
|µ|, strong-coupling behaviour sets in over a narrowŨ -interval aboveŨ0, and is in practice
established byŨ ∼ 2 or so. This concurs with weak-coupling studies based on low-order
perturbation theory inU , which likewise identify the onset of strong-coupling behaviour
at Ũ ∼ 2; see e.g. [16]. Quantitatively, however, the present calculations probably predict
the persistence of essentially strong-coupling behaviour down to somewhat too low values
of Ũ . This is for example hinted at by thẽU = 2.5 spectrum in figure 4, and is hardly
surprising since the theory seeks to capture the strong-coupling asymptotics; but we shall
return to the matter again in section 5.1.

The additional many-body broadening of the Hubbard satellites, discussed in section 4.2,
is demonstrated clearly in figure 7 whereD(ω) is shown forŨ = 6. Superimposed on the
spectrum is the predicted strong-coupling form for the Hubbard satellites, consisting in the
flat-band case of Lorentzians with half-width 210 (and net intensity1

2); see equation (4.25).
These are seen to reproduce well the ‘full’ Hubbard bands, whose centres forŨ = 6 are
also found to be very close to±(U/2)(1+ 410/πU), as predicted for the flat-band case in
section 4.2. For comparison the simple UHF spectrum is also shown: its deficiencies, even
as far as the Hubbard satellites are concerned, are obvious.

We consider now in more detail the low-frequency Kondo resonance. In section 4.1 the
theory has been shown to yield correctly the Fermi liquid quasiparticle form, equation (4.20),
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Figure 7. π10D(ω) for the flat-band case with̃U = 6 (solid line), compared to the predicted
strong-coupling behaviour of the Hubbard satellites (dashed) and the simple UHF spectrum
(dotted).
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Figure 8. Scaling behaviour of low-energy Kondo resonance:π10D(ω) versusω̃/ω̃K for
the flat-band case with̃U = 4 (dotted line), 6 (dashed) and 8 (solid). The small feature at
|ω̃/ω̃K | ∼ 1.4 is entirely an artifact of the specific RPA form for5+−AA : see figure 12. Inset:
correspondingπ10D(ω) on an ‘absolute’ scale, to illustrate exponential narrowing of the Kondo
resonance in thẽU -range considered.

for G(ω), with quasiparticle weightZ ∝ ωm in strong coupling (equation (4.21)), and in
terms of which the low-ω behaviour ofD(ω) must (and does) scale universally. Strictly
speaking, the quasiparticle form is of course valid forω̃/Z � 1 (see section 2); and although
naive extrapolation of it would imply a pure Lorentzian lineshape withω̃K = Z, scaling
solely in terms ofω̃/ω̃K for all frequencies, we do not expect either to be true for finite
Ũ . We do nonetheless expect to see, asŨ → ∞, the emergence of scaling behaviour
that is not confined only tõω/ω̃K � 1. To illustrate this, figure 8 showsπ10D(ω) for
Ũ = 4, 6 and 8. The inset shows the central portion of the resonance on an ‘absolute’ scale,
to illustrate its exponential decrease for theŨs considered. The main figure by contrast
showsπ10D(ω) versusω̃/ω̃K. From this, the scaling behaviour (and non-Lorentzian form)
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of D(ω) is evident; and the expected small finite-U corrections, apparent with increasing
ω̃/ω̃K and diminishing with increasing̃U , are seen.

Finally, we point out that the apparent small spectral feature occurring in figure 8 at
|ω̃/ω̃K | ∼ 1.4 is entirely an artifact of using the specific RPA form for5+−AA (equation (2.20))
in equation (3.12) for the interaction self-energy. This is examined further in the following
section, where a heuristic remedy for it is given.
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Figure 9. (a) Repeated particle–particle and (b) ‘bubble’ contributions to6iσ .
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Figure 10. π10D(ω) versusω̃ for the flat-band case with̃U = 4, including and omitting
particle–particle plus bubble contributions (solid and dashed lines respectively).

5.1. Extensions

The dynamical self-energy diagrams hitherto considered are shown in figure 3; they include
repeated particle–hole interactions in the transverse spin channel (leading to the RPA form
for 5+−AA occurring in equation (3.10) for6A↑; see also figure 1). It is natural to examine
likewise the additional effects of including both repeated particle–particle and ‘bubble’
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interactions. These are shown in figures 9(a), 9(b) respectively, and to lowest order inU

areO(U3) andO(U4). (The corresponding diagram of orderU2 is already included in
figure 3 and equation (3.10).)6A↑(ω) is then the sum of figures 3 and 9; the local moment
|µ| is again determined from the pinning condition equation (3.16), andŨ0 is thereby found
to decrease slightly tõU0 ' 0.89. If one worked with the restricted HF saddle point (|µ| = 0
for all Ũ ), the sum of repeated bubble diagrams in figure 9(b) suffers forŨ > 1 from the
same divergence and instability as the corresponding transverse spin5+−αα , equation (2.26).
But with |µ| 6= 0, this behaviour is again eliminated entirely. In fact, neither the particle–
particle nor the bubble diagrams make any appreciable contribution to the single-particle
spectrum. This is evident from figure 10, which showsπ10D(ω) for Ũ = 4, with and
without the additional contributions. The same situation occurs asŨ → 0 (as one expects
from the higher-order nature of the diagrams) and, while the role of such in relative terms
is more significant forŨ ∼ 1–2, even here their effects are minor.

There are two essential elements to the theory developed thus far.

(i) First, that6A↑ has a contribution given from figure 3 by the form equation (3.10),
capturing the dynamical spin-flip scattering required to describe the Kondo limit, as reflected
in particular in the low-frequency resonance in Im5+−AA (ω).

(ii) That equation (3.16) must be satisfied:D(ω = 0) is pinned, the Friedel sum rule is
satisfied.

The calculations described above have however been more specific in that we have
employed the RPA form equation (2.20) for5+−AA , with bare interaction vertexU , and
with equation (3.16) used in practice to determine the local moment|µ|. However this
degree of specificity is not in fact necessary, and we now sketch two variants of the basic
approach that lead in particular to the same strong-coupling asymptotics.

The first involves a simplified vertex renormalization: the RPA form for5+−AA is
retained, but with the bare interactionU replaced by a renormalized vertexU ′; specifically,
5+−AA = 05

+−
AA /[1 − U ′05+−AA ]. Strictly speaking, vertex renormalization will of course

lead to anω-dependentU ′. We merely mimic it phenomenologically, but simply, via a
static interaction for which, in a wide range of contexts, there is ample precedent (see
e.g. [23]); and, since its use is largely heuristic, we do not specify here the (many) possible
diagrammatic resummations to whichU ′ could correspond. In the context of figure 3 for
6A↑, the interiorU -vertices are thus replaced byU ′. Likewise, so too are the two endU -
vertices: again, there are many possible classes of resummation for which this is appropriate.
Equation (3.10) for6A↑(ω) is thus modified to

6A↑(ω) = [U ′]2
∫ ∞
−∞

dω1

2π i

05
+−
AA (ω1)

1− U ′05+−AA (ω1)
GA↓(ω1+ ω) (5.1)

where (see section 3.2)05
+−
AA andGA↓ again depend parametrically onU and |µ| only via

the combinationx = 1
2U |µ|/10.

The pinning condition, equation (3.16), is now enforced. In direct parallel to equation
(3.17), it may be cast as

f (U ′; x) = x (5.2)

wheref (U ′; x) = 1−1
0 6R

A↑(ω = 0). The problem may now be solved in three simple steps.

(a) For any givenx = 1
2U |µ|/10, equation (5.2) is solved forU ′.

(b) The single-particle spectrum, given from equations (3.1)–(3.3) byD(ω) =
1
2[DA↑(ω) + DA↓(ω)] with DA↓(ω) = DA↑(−ω), then follows directly since6̃A↑(ω) =
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Figure 11. Ũ ′ = U ′/π10 versusŨ , as explained in the text. Inset:̃U ′/Ũ versusŨ .

− 1
2U |µ| +6A↑(ω) depends parametrically only onU ′ andx. From this, the local moment
|µ| is then determined via

|µ| =
∫ 0

−∞
dω [DA↑(ω)−DA↓(ω)] (5.3)

(which is thus satisfied self-consistently).
(c) Sincex = 1

2U |µ|/10 is specified, and|µ| is now known,U follows directly. In
this way one obtains thẽU = U/π10 dependence of̃U ′ = U ′/π10, |µ| and the impurity
spectrum; and for the flat-band case the resultantŨ -dependence of̃U ′ is shown in figure 11.

The solution to the approach just outlined is in fact already contained in the results
from the theory pursued in the preceding sections. The reason for this is that6A↑ in the
latter approach (equation (5.1)) depends parametrically onU ′ andx in precisely the same
way that6A↑ in the original approach (equation (3.10) with (2.20)) depends onU andx.
In particular, the functionf (y; x) appearing in equation (5.2) withy = U ′ is precisely the
same function arising in equation (3.17) withy = U ; and once either equation (3.17) or
equation (5.2) as appropriate is solved, the single-particle spectrum follows directly. Hence
the impurity spectrum obtained in the original approach for any givenU = a > U0 is
precisely that appropriate to the latter approach withU ′ = a, and the correspondingU is
then obtained from figure 11: the spectra shown in figure 4, for example, now correspond
to Ũ ′ = 6, 4 and 2.5 and hence from figure 11, tõU ' 6.5, 4.6 and 3.3. Further, as
illustrated in the inset to figure 11,̃U ′/Ũ ∼ 1−O(Ũ−1) as Ũ →∞. This, coupled with
the corresponding asymptotic behaviour|µ| ∼ 1−O(Ũ−1), is readily shown to be sufficient
to ensure that the leading strong-coupling behaviours of the two approaches coincide, in
particular equation (4.11) for the Kondo scale and the scaling (figure 8) of the Kondo
resonance.

In fact, as figure 11 shows, the latter approach amounts in practice to a simple elongation
of the Ũ -axis in the original approach. As such, it has the advantage of not suggesting the
persistence of essentially strong-coupling behaviour down to somewhat too low values of
Ũ (as found with the original approach). But it does have an obvious disadvantage in that
Ũ ′ is simply undetermined for̃U ′ < Ũ ′0 ' 0.94 (i.e. Ũ < 2.04 from figure 11): below
this value,|µ| = 0 and hencex = 0, and forx = 0 equation (5.2) is trivially satisfied
for any Ũ ′ < Ũ ′0. This is largely a reflection of our phenomenological use ofU ′: to



A local moment approach to the Anderson model 2697

ensure a smooth passage to the non-interacting limit—as occurs naturally in the original
approach—obviously requires a specific theory forU ′ itself, a matter we pursue no further
here.

The second extension we consider is motivated by the fact that the two key elements
of the basic theory, specified as (i) and (ii) above, do not require5+−AA occurring in
equation (3.10) for6A↑ to be given by the RPA form equation (2.20). In particular, neither
the strong-coupling asymptotics deduced in section 4, nor the low-frequency behaviour
established in section 3.2, require5+−AA to be thus given. The specific calculations leading
to figures 4–8 have, however, employed5+−AA in RPA form. From equation (2.34a) it
follows that while the resonance in the resultant Im5+−AA (ω) is indeedcentredon ω = ωm,
its effectivewidth in strong coupling is of orderωm/Ũ

2. And this in turn may be shown to
underlie the small spectral feature occurring in the strong-coupling scaled spectrum (figure 8)
at ω̃/ω̃K ∼ 1.4, which is thus an artefact of employing the specific RPA form.

In a more elaborate theory, however, we anticipate that in strong coupling Im5+−AA (ω)

may have both its maximumandwidth of the order of the Kondo scaleωm, i.e. that it takes
the form

1

π
Im5+−AA (ω) =

1

ωm
F(ω/ωm). (5.4)

Subject only to∫ ∞
0

dω

π
Im5+−AA (ω) ∼ 1

asŨ →∞ (see equation (4.2)), such a form again leads naturally to the same exponential
asymptotics forωm (equation (4.11)); to the quasiparticle form equation (4.20) for the low-
ω behaviour ofG(ω); and to the same strong-coupling asymptotics (section 4.2) for the
Hubbard satellites.

Our aim now is simply to show that the form equation (5.4) indeed eliminates the small
spectral anomaly in figure 8. To this end, and purely for illustrative purposes, we consider
anF(y) of the form

F(y) = A y

1+ y2
e−y/α (5.5)

for y > 0, and zero fory < 0. The spectral weight of Im5+−AA (ω) is thus confined to
frequenciesω > 0, as appropriate in strong coupling (see equation (4.2)); the constantA is
determined from∫ ∞

0

dω

π
Im5+−AA (ω) = 1

and the constantα, chosen quite arbitrarily such thatα � 1, merely serves as a high-
frequency cut-off to ensure the resonance is normalizable. The specific form ofF(y)

should not of course be taken too seriously, but it serves to illustrate the point, since the
maximum ofF(y) occurs fory = 1+O(1/α) and its effective width is likewise of order
unity. Equations (5.4), (5.5) for Im5+−AA are now employed in the basic expression equation
(3.12) for the self-energy6A↑(ω); and for simplicity the local moment|µ| in bothGA↓ and
6̃A↑ (equation (3.9)) is set to its UHF value|µ0|.

The modelling is not solely engineering however, since for givenŨ , ωm must now be
determined from the pinning condition equation (3.16) (in which way we confirm explicitly
that equation (4.11) for the Kondo scale is correctly recovered). For the flat-band case, and
in direct analogy to figure 8, figure 12 shows the resultant low-ω behaviour of the Kondo
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Figure 12. Low-energy scaling behaviour ofD(ω) as explained in the text:π10D(ω) versus
ω̃/ω̃K for ω̃m = ωm/10 = 10−m with m = 1–5 (m = 5 is the solid line), corresponding
respectively toŨ ranging from∼5–11. Inset: Comparison of scaling form (solid line) to that
shown in figure 8 (dashed line).

resonance:π10D(ω) versusω̃/ω̃K (with ω̃K ∝ ω̃m again the half-width at half-maximum
of the resonance) for̃ωm = 10−m with m = 1–5, corresponding respectively tõU ranging
from around 5 to 11. The scaling behaviour is clear; and relative to figure 8, a slight
redistribution of intensity in the Kondo resonance has occurred (as illustrated further in the
inset to figure 12), which indeed eliminates the spectral anomaly.

6. Summary

We have described in this paper a rather simple, yet inherently non-perturbative, approach
to single-particle spectra of the symmetric Anderson model. By introducing local moments
explicitly from the outset, and employing a two-self-energy description that captures in
a physically transparent fashion the dynamical spin-flip scattering essential to the spin-
fluctuation limit, the resultant theory transcends quite successfully a number of limitations
of previous approaches: it covers simultaneously both low- and high-energy excitations—the
Kondo resonance and Hubbard satellites—while preserving correctly Fermi liquid behaviour
at low energies; it encompasses the strong-coupling behaviour of the spectrum on both low-
and high-energy scales, while in weak coupling it is perturbatively exact to second order
in U ; and the atomic limit is also correctly recovered. Imposition of the Friedel sum
rule—whereby the single-particle spectrum at a single point, the Fermi levelω = 0, is
pinned at its non-interacting value—underlies to a large extent the essential success of the
method: its imposition, as a self-consistency condition, in particular leads non-trivially to
both the emergence of Fermi liquid behaviour at low energies and the asymptotics of the
Kondo scale in strong coupling, where the exponential dependence of the latter, known [2]
e.g. from scaling and the Betheansatz, is correctly recovered. Further, while a flat-band
host has latterly been employed for tangible illustration of spectra, the theory is not of
course restricted to this special case; it can deal readily with a more realistic hybridization
function, where the requisite computations are straightforward and rapid.

Finally, and importantly, we add that the underlying approach is not confined to the
description of a Fermi liquid state, but can also handle an insulating or semi-metallic host
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where use of a two-self-energy description is in general a necessity and not a luxury; this, as
well as extension of the present work to finite temperatures, will be described in subsequent
publications.
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Appendix

The polarization bubble (diagram (a), figure 1) is given by equation (2.18), with the bare
propagators from equation (2.12). For the flat-band case, with1I(ω) = 10 and1R(ω) = 0,
05+−AA may be obtained in closed form. With̃ω = ω/10 andx = 1

2U |µ|/10 = Ũ |µ̃|, the
result is

π10 Re05+−AA (ω) =
1

2x − ω̃
[
tan−1(x)+ tan−1(x − ω̃)]

+ (2x − ω̃)
(2x − ω̃)2+ 4

[
tan−1(x)− tan−1(x − ω̃)]

+ 1

(2x − ω̃)2+ 4
ln

[
(x2+ 1)

(x − ω̃)2+ 1

]
(A.1)

and

π10 Im 05+−AA (ω) = sgn(ω̃)
2

(2x − ω̃)2+ 4

×
{

1

(2x − ω̃) ln

[
(x2+ 1)

(x − ω̃)2+ 1

]
+ tan−1(x)− tan−1(x − ω̃)

}
(A.2)

(such that Im05+−AA (ω) > 0 ∀ω̃). The remaining05ααs follow by symmetry from
equations (2.19).
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[14] Holm J, Kree R and Scḧonhammer K 1993Phys. Rev.B 48 5077
[15] Yosida K and Yamada K 1970Prog. Theor. Phys. Suppl.46 224

Yamada K 1975Prog. Theor. Phys.53 970
Yamada K 1976Prog. Theor. Phys.55 1345

[16] Horvatíc B and Zlatíc V 1985Solid State Commun.54 957
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